During Award Ceremonies, Twitter Activity Revolves around Winners

For the past few days, I have been looking at tweets about the Golden Globes. I collected the tweets using the amazing rtweet package. I then used substring search functions to look for the names and handles of prominent actors and winners (Variety’s article about Golden Globe social media trends was very helpful in this regard).

To create this line graph, I constructed a dataset with counts of tweets using #goldenglobe, as well as this hashtag with the specific users/movie mentioned below (I used their first/celebrity name and their handle, to try and capture as much as possible without collecting noise). I summed the number of tweets from the second to the minute level using aggregate().

The use of #goldenglobes has a hashtag was fairly volatile over the course of the night. I suspect this is because use of the hashtag increases when a winner of an award is announced. A quick glance at the top winners of the night seem to confirm this, as tweets about Lady Gaga, Sandra Oh, and Malek Rami increased immediately after their win was announced.

Curiously, Variety did not mention Bohemian Rhapsody winning the (Drama) Best Picture award as a “top most-discussed” moment, despite producing the largest peak of the night (a more in-depth analysis of that time span suggests a compounding effect—Rami winning the “Best Actor” award coincided with Bohemian Rhapsody winning “Best Motion Picture”, so the two trend somewhat closely.

However, mentions of these major actors and media products are only a blimp of the overall Golden Globes coverage. This is an important consideration, because the “most tweeted about celebrities” were tweeted about specifically because they won awards. Otherwise, mentions of them were simply rumbles in Twitterspace (as indicated by the relatively low volume during non-winning times).

Another interesting feature of these award-celebrating tweets is the long-lag. For example, tweets about Sandra Oh and Lady Gaga continued well after their respective wins (one reason for Sandra Oh’s sustained attention may also be her role as role.

The second, smaller blip for Lady Gaga occurs when she does not win the Best Actress award for Shallow (the award went to Glen Close). This “bliping” is actually also a pattern seen among other surprising “losers” of the night (e.g., Crazy Rich Asians, Black Panther).

To advance my ggplot2 skills (“skillz!”), I decided to use reshape2’s melt() function, which helps transform wide data to long data (you can learn more about it here and here). This was a relatively new tool for me, but learning it gave me a lot more control over the multiple lines in my graph!

This was also my second time using plotly. This was my first time embedding annotations via plotly, which was a really interesting learning experience. For those who are familiar with ggplot2 and are interested in creating interactive data, I strongly encourage learning plotly! I still feel like I’m in the learning stage… but I know that the more I use it, the better I become!

Tweets about WI Gubernatorial Race Part II: Election Night

Sorry it’s been so long since I’ve posted! The last few months has been absolutely crazy, with visiting family members, paper deadlines, and end-of-semester tasks. I did hit a major milestone: I have officially completed all my coursework for my Ph.D!

Today, I want to focus on my part-2 analysis of the WI election, which I am informally calling, “If you want to know who will win gubernatorial elections first, follow local journalists.”

The figure below is a plot of tweets about Scott Walker and Tony Evers on the night of the Gubernatorial Election (12 a.m. to 2 a.m.). [For more about the data collection, please see the post below].

The Big Picture

The first vertical line represents the first tweet in my dataset that called a win for Evers. This came from Milwaukee Journal Sentinel reporter Mary Spicuzza, who tweeted out at 12:53 a.m. CST (apologies; my timestamp is not adjusted for daylights saving).

mspicuzzamjs.png

While there was an increase in the number of tweets after Spicuzza’s, it didn’t reach full attention for another hour and a half, when it was officially reported by the Associated Press at 1:25 a.m. Attention, measured by counts of tweets with the word Walker or Evers, spikes not long after this tweet.

8 ap.png

What happened in that window of time, the half hour between when it was officially reported by the Journal Sentinel, and when it was reported by the Associated Press?

A Twitter Conversation among Wisconsonites

Unsurprisingly, most of the tweets from this time appeared to come from Wisconsin residents, or people with ties to Wisconsin (as indicated by their geographic information, or by information in their profile, such as being an alum of a UW-System school. One tweet from a self-reporting Wisconsonite said, “Tony Evers (D) now up over Scott Walker (R) by just over 1,000 votes out of 2.5M votes cast. #WiGov”

There were also many references to local media outlets, as seen in the examples below (which were also retweeted by mostly Wisconsinites):

“Looks like @tmj4 just reported live from the courthouse that 38,000 votes just went to #tonyevers when @cityofmilwaukee votes we're tallied. I'm calling it. Tony Evers defeats Scott Walker as the next govenor.of #Wisconsin. Boom. https://t.co/0Y1cObTwy!” - RyanThompson

1.png
4.png

There were also many references to local Wisconsin issues, such as Walker’s rampant Union-busting, or his gutting of education funding (this was mentioned by both people in Wisconsin and those outside of Wisconsin, though the former had an obviously greater attachment):

”Fingers crossed that my great home state of Wisconsin has finally rid themselves of the Union-busting, education-destroying, Foxconn swindling corporate shill that is Scott Walker. But I won’t believe he’s gone until every vote is counted” - @sjtruog (1:17 AM)

“Wait did Scott Walker actually lose? Bc I hate him with such a particular acid for what he did to public education in that state that I want to know if I can dance a mad tarantella on that smug prick’s career grave” - @meganskittles

Cultural References

One of the things I really enjoyed about these tweets were their continual cultural references to Wisconsin. Because tweets during this time were predominantly written by Wisconsonites or those with ties to Wisconsin, there were many tweets referencing things like Menards, as noted above, Culvers, and the Packers).

“I've been this proud to be a Wisconsinite three times: when Favre won a Super Bowl, when Aaron won a Super Bowl, and when we voted melty-faced suffering-horny human khaki Scott Walker out of office.” - @meg_luvs_pandas (1:24 AM)

“If Tony Evers beats Scott Walker that would be the most Wisconsin shit that ever happened since Culver’s showed up.” - @Joe_Bowes (12:53 AM, Milwaukee, WI)

“Can someone tell me if Scott Walker is going to have to get a job at Menard's so I can go to bed.“ - @JustinLaughs (1:07 AM, from Greendale)

Another noticeable feature of this language was the use of the pronoun “we” to refer collectively to Wisconsinites.

“are… are we finally getting rid of scott walker [?] is it happening [?]” - @AlexZiebart (12:55 AM, Milwaukee, WI)

“I’m so nervous to see who won governor in wisconsin […] we need Scott walker out of office!!!” - @taypyt (12:55 AM)

“My final political tweet for the evening: if we have really finally done it, nothing has given me more pleasure than to vote against Scott Walker in five different elections. Bye Felicia” - @alephtwo (12:58 AM, Madison, WI)

The use of this “royal” we (“state-wide” we?) instills the idea of a collective identity that is directed towards the voting out of Walker from office. It evokes a sense of solidarity, or “survival” from Walker’s terms in office.

Outsiders looking in

A few outside of the WI gate were able to tap into this information, as indicated by this tweet from VA resident: This is one of the most unbelievable finishes I have ever seen. Came down to a bunch of uncounted absentee ballots. Looks like Scott Walker is done. https://t.co/D8VwrxGZOk.” - @junkiechurch, (12:57 AM)

Those in close proximity to the Wisconsin appeared to be more attentive as well:

“No more Scott Walker. Wisconsin, I tease you all the time, but you did a good job today.” - @KyleWarner3000 (1:16 AM, DeKalb, IL)

However, many (presumably) outside of Wisconsin expressed frustration about wanting to learn more:

“DAMNIT CNN SHOW ME THE SCOTT WALKER RACE“ - @Seattle_9 (1:12 AM, Seattle, WA)"

“Wait did Scott Walker actually lose? Bc I hate him with such a particular acid for what he did to public education in that state that I want to know if I can dance a mad tarantella on that smug prick’s career grave “ - @godhatesyeast (1:13 AM, USA [no state indicated])

It was about Walker losing, not Evers winning

As seen by the figure above, attention was squarely focused on Walker losing, rather than Ever winning. This suggests that Twitter communities perceived the election as a victory because Walker lost, not necessarily because Evers won. Many of the tweets were focused on insulting Walker.


”EAT MY ENTIRE SHIT COTT WALKER” - @ChiYoungMoon (12:59 AM)

“Good bye Scott Walker you trifling ham and cheese eatin' bitch https://t.co/ODW3kMWPhC“ - @jae_dubb (1:09, Chicago)

In situations where Evers was referenced, it was often because he (having been a teacher) made an ironic foil to Walker.

5 popular.png

“Scott Walker loses thanks to a Milwaukee wave. What a night. Couldn't happen to a more deserving guy. https://t.co/2KEDdpeNAe3” - @Save_the_Daves (1:15 AM, Milwaukee, WI)

In the above instances, Evers is celebrated but not explicitly mentioned. Walker, by contrast, is referenced in full name. In the first tweet, by @Bro_Pair, Evers is framed as a “kindly teacher”, the kind of person who was directly impacted by Walker’s economic policy. The expression of joy (“glad I stayed up late enough…”) reflects a sense of schadenfreude—taking pleasure in watching Scott Walker lose. This sense was expressed by many others…

“It looks like Scott Walker might lose to Tony Evers. Don’t go to bed or you might miss the best schadenfreude of the midterm elections.” - @RiskyLiberal (1:23 AM)

“Seeing Kris Kobach and Scott Walker lose is pretty sweet, but my schadenfreude dream team was Ted Cruz and Steve King “ - @antitractionist (1:23 AM)

… and sometimes in bizarrely sexual references.

The Recount Topic

Tweets about a recount appeared as early as announcements about the Milwaukee absentee ballots. Many tweets were written by conservative-identifying or MAGA-identifying accounts.

(R) Scott Walker, WI gov, is requesting a recount.” - @AKLLL49 (1:20, Profile: Love our @POTUS […] PHUCK #Grammernazis #Haters of #Guns and #Freespeech. #MAGA)

“Both sides expect protracted recount in Wisconsin governor's race between Scott Walker and Tony Evers https://t.co/ilCQHR8KUT” - @jackiebullivant (1:22, Profile: Conservative, business owner & political enthusiast. We need honest, authentic gov’t FOR and BY the people b/c people matter! Free speech. #MAGA #PPC2019)

“Governor Scott Walker's campaign has announced plans to call for a recount, should Evers come out on top. Either candidate can call for a recount if the results come in within 1%.” - @KFIZ1450 (1:03 AM, Fond du Lac, WI)

One was pretty sure Walker was going to win:

“Hey look on the bright side at least we still have Scott Walker and Ted Cruz.” - @johnforchione (12:57 AM)

Liberal Rebuttal

By 1:23, there were already (mostly liberal) rebuttals to a call for a recount, with many pointing out (ironically) that Walker had pushed for the bill that now prevented him from calling a recount.

“Tony Evers defeats Scott Walker by 1.1%! Outside of the margin for a recount that Scott Walker passed  into law for a recount. Karma is a bitch!” - @Fetzer2 (1:23 AM)

Conclusion

What can we learn from this analysis?

1) If you want to know who wins a state-wide election, follow local reporters. They have the greatest level of access to updated voting information, and are much more knowledgeable about their geographic region than national news outlets.

2) In a media environment that focuses on one event, or what researchers would call a media storm, “liberals” and “conservatives” respond to each other very quickly, within the span of a few minutes. Given the hybrid nature of the U.S. media system, it is likely that media storm dynamics will impact social media, particularly Twitter(as a platform for professional journalism). Capturing this dynamic in media storms, therefore, requires very granular levels of data.

3) To understand the politics, one needs to understand the culture of that society. Regional cultural references were an important feature of this discourse, which was unique compared to the post-AP tweet time span. In this latter time, tweets were still focused on Walker’s loss (rather than Ever’s win). However, following Associated Press’ reporting, the tweets were predominantly by those outside of Wisconsin. The story was reaching national attention, and the discourse had lost this specific local component.

Overall, this was an interesting project for me to examine how a state-wide political event goes national on Twitter in an hour and a half.

Tweets about WI Gubernatorial Race Part I: October 28 to Nov 6

Politically, Wisconsin is quite different from my home state of New York. It’s long been considered a purple, or swing, state. For that reason, Wisconsin has often received extra national attention when it comes to local or state-wide politics.

The 2018 Midterm Elections were another example of this, with many citizens around the country tracking Governor Scott Walker’s race against Superintendent Tony Evers. Today, I explore how Twitter talked about this race in the week leading up to Election night (October 28 to Nov 7). This post will focus on the lead-up to the election. Part II will focus on the last few hours of the election (12:30 to 2:30 on November 7, 2018).

(Note: Tweets were collected using the r package rtweets. All datetimes have been converted to CST. For more information about this collection and analysis, please scroll to the bottom)

A broad temporal view: Oct 28 to Nov 6

In the week leading up to the election, there were several noteworthy spikes. We focus on two in particular: November 1 (8-9pm) and November 4 (7pm).

November 1, 2018 from 8:00-9:59 pm

This was the largest spike for Walker in this week (1568 tweets in two hours). Far and away, the most common verb used was variants of “call” (e.g., “called”/”calls”/”calling”). This is because, that day, Governor Walker said that President Obama was "the biggest liar of the world.” This language (employed by non-journalists and journalists alike) was also employed in leads of news stories in Fox News and The Hill).

November 4, 2018 from 7:00-7:59 PM

Although this peak was not as prominent as the others explored here, it is one of the few times that Evers exceeded Walker in references on Twitter.

Many of these tweets appeared to be campaign-oriented tweets about Evers’ support for Wisconsin residents. Unlike the previous spike, there did not seem to be an event aligned with this moment in time. This suggests that this spike was campaign-induced, rather than naturally generated.

A closer look at Election Day

As can be seen in the above image, attention to the Walker/Evers election peaked after 12:00 AM CST, late in the night relative to other well-watched races that day. Votes rolled in minute by minute, with many outlets (including NYT, one of my main trackers) showing a less than 1% margin for several hours.

Methodology

Tweets were collected using Mike Kearney’s rtweets. I began my search at 2:40 AM CST on November 7, 2018, using the search terms “Scott Walker” OR “Tony Evers” OR “#wipolitics” OR “#wielection“. Twitter’s REST API provides an about 1% random sample of tweets. This yielded about 111,000 tweets.

Tweets were annotated for their part-of-speech and dependency using coreNLP. Within the corpus, there were over three million dependencies.

August: The Month of Travel!

It's been quite some time since I've done a lot of travel, but my August will be all about trips, trips, trips!

In the beginning of the month, I will be attending sixth AEJMC in Washington D.C. (Aug 6-9)  to present my work on news coverage with tweets written by Russian IRA accounts. I'm looking forward to presenting my work, and taking some time to visit the city!

Then, it's off to NYC for Restaurant Week and to celebrate a friend's birthday!

Back to Madison briefly, to get ready for a family trip to Europe with John! Our Europe trip includes stops in Keflevik, Iceland; Paris, France; and Amsterdam, the Netherlands. After several years of travel-less-ness, my wanderlust is really itching.

Here's to a month of good adventures, new ideas, and an ever-expanding universe! - Jo

Time Series of IRA Activity on U.S. Social Media Platforms

So I've been toying around with some of the data on other social media platforms, now that much of it has been made publicly available. I'm looking forward to doing a more systematic analysis of the content. In the meantime, however, here are some counts of IRA activities on different social media platforms from 2015 to 2017. 

I was somewhat surprised to see that the time series did not line up as neatly as I thought they would have. Perhaps these strategies are meant to complement each other? This is where a deeper dive into the content or the account would be more useful. For example, perhaps conservative-imitating IRA accounts (e.g., Twitter's @TEN_GOP) responded to different things compared to liberal imitating IRA accounts (e.g., Facebook/Twitter's @Blacktivist group). 

Given the pending lockdown of information regarding this case, it is more important than ever to share and verify this information. It's a shame researcher do not get much access to this kind of data, as scientific rigor should be the minimum standard for analyzing potential foreign influences into American elections. 

Reddit Data Source: [Link]
Facebook Data Source: [Link]

Advertisements purchased by IRA on Facebook

Submissions to Reddit by IRA-controlled accounts

Tweets written by the IRA

Regarding the separation of immigrant families in the United States:

The history of the United States is one of cruel domination and inhumanity.

Since the creation of the United States in 1776 (242 years ago), until 1865 (153 years ago), American citizens owned Black slaves. Jim Crow laws enforced racial segregation for another 100 years (until 1965).

188 years ago (in 1830, under Andrew Jackson), the United States passed the Indian Removal Act, resulting in the forced relocation of over 10,000 Native Americans (over 2,000 died).

125 years ago (in 1893), U.S. settlers overthrew the King of Hawai’i, with the intent of annexation. Under duress, then-King Kalakaua was forced to sign a new constitution that relinquished his power to white Americans who controlled the legislature. Despite opposition by then-President Grover Cleveland, Hawai’i became a state in 1958 (Eisenhower).

Following the brutal Philippine-American War 119 years ago (1899, 200,000+ deaths), the United States (represented by then-Governor of the Philippines Taft) imposed a strict rule over the island that lasted until WWII, when the U.S. left the Philippines to fend for themselves against Japan.

76 years ago (1942, FDR), the United States forced over 100,000 residents of Japanese ancestry into an internment camp. The U.S. Census Bureau only admitted their complicity in 2007. 

Knowing this history should allow us to avoid the inhumanity of our forefathers. And yet, we have failed to do this time and time again. We let paranoia and xenophobia and supersede logic, compassion, and whatever the U.S. claims to stand for. Don’t make that mistake today.

In 2018, the United States apprehended and separated between 1,000 and 2,000 children from families trying to cross the U.S.-Mexican border. Over 11,000 children are held in Office of Refugee Resettlement (ORR) sites, which have been overfilled for Do4 years (since 2014). The ORR regularly loses children (according to one NYT story, 1,475 children cannot be found). 

What can you do about this?

  1. Support the ACLU; whose chapters in California are actively litigating.
  2. Donate to Act Blue, a collective of eight groups who oppose the separation of children from parents when attempting to cross the U.S. border.
  3. Call your Senator and express your opposition. Don't worry - Senator's offices are very used to this type of call. You can check out the above link for an example script.
  4. If you are in a major city, volunteer to become a Child Advocate through the Young Center for Immigrant Children's Rights.

 

 

Understanding a little more about recent coverage of Korean-U.S. relations through adjective use

Yesterday, U.S. President Trump pulled out of a "highly-anticipated" summit meeting with North Korea's Kim-Jung Un. Given the freshness of this story, it'll take some time collect enough articles to do an anlaysis of this specific incident. But, in the meantime, some interesting results from my analysis of Korean-U.S. relations in American news below.

(Data cleaned and analyzed using R tidytext, quanteda, and OpenNLP. Graphs produced by ggplot2 or MediaCloud.)

Count of articles using the words "Trump" and "North Korea" in top American news media (digital + traditional). Results gathered using MediaCloud archive.

Count of articles using the words "Trump" and "North Korea" in top American news media (digital + traditional). Results gathered using MediaCloud archive.

As we can see above, the majority of the coverage appeared to be between May 7 (when North Korea claimed to have demolished a nuclear test site) and May 21. Using those two weeks as my window, I pulled all articles referencing "Trump" and "North Korea" from four news outlets: CNN (n =96), Fox (n = 114), the New York Times (n = 89) and the Washington Post (208), a total of 507 news stories.

I tagged all the words in the news stories for their part of speech using OpenNLP. I then pulled out all the adjectives, removed duplicates, and screened them for accuracy (OpenNLP has an above 90% accuracy, but the human eye is critical to ensuring quality results). I finally looked at the use of these adjectives in relation to specific actors/parties (mainly North Korea, South Korea, and the United States). Given the effect of political personalization, I consider both the country name and the name of the leader (e.g., "North Korea" OR "Moon Jae-In" OR "President Moon" OR "Moon Jae In") as keywords. I retained the adjective if it appeared within three words of the NK, SK, or US keywords.

Raw counts are presented below (keep in mind the corpus is not perfectly balanced... also, sorry I was too lazy to reorder the charts XD Just so tired and wanted to practice some code):

Most commonly used adjectives related to Trump/U.S.

 

Most commonly used adjectives related to Kim Jung-Un and North Korea

 

Most commonly used adjectives related to President Moon and South Korea

How President Trump used modal verbs in his Syrian air strikes speech

A list of modal verb usage in President Trump's recent speech on the Syrian air strikes. "American" subjects are highlighted.

Modal (auxiliary) verbs (can, could, should, would, must, will, etc.) are an interesting subset of American language, as they are used to indicate "intention" (the way things "ought to" be or "should" be, or an evaluation of what "can" happen). Different modals have different degrees of "modal force."

Here, you'll see that the modal "can" is the most commonly used, often referring to non-American subjects (e.g., "nations of the world" or "our friends"). In the three instances "can" is used in relation to Americans, two are negations ("No amount of American blood..." and "we cannot..."). In the last instance, "can" is used to express a hope, rather than an intention.

By contrast, the other "can" modals are used effectively as threats and evaluations: "The nations of the world can be judged by the friends they keep" or "Increased engagement [...] can ensure that Iran does not profit..."

This distinction is important because it uses our allies and vague "international norms" to express how the world "can" be. Even though the U.S. is certainly an instigator, the modal verb usage implies that we are trying to distance ourselves from taking ownership of these air strikes. We frame this use of force as unavoidable, because of actions taken by other states. The singular use of "would" and "must" in relation to Russia reinforces this further, especially given that they are used so closely together (Russia was supposed to do something, and then they didn't, so they now must do something else).

To make a long story short, we express the necessity of use of force here by saying what we (the US) "cannot" do, and implying what "can" (implicitly "should") happen as a result.

This speech obviously deviates from President Trump's typical language use, but it goes to show the significance of "use of force": even rebels fall in line when they have to justify violence.

(Hoping to do some analysis of news around this air strike tonight as well!)

Interview with Cap Times

This past week, I interviewed with Capital Times in Madison to talk about a recent co-authored study about Russian propaganda in U.S. news media.

I'm glad that the writer, Lisa Speckhard, did a great job capturing my greatest concern with Russian influence and disinformation. We know that the Russians are not going to stop trying to infiltrate U.S. public discourse. They haven't stopped since WWII, and I doubt they ever will.

What we can do is ask ourselves (1) where are they likely to make their way into American political discourse and (2) what can we do [on our end] to stop it.

Journalists are in a special space, as gatekeepers of information, to both prevent and perpetuate Russian propaganda from amplifying. As we learned through this study, this gate is not impervious... especially now that there are so many gates.

In order to keep our public discourse "pure" (that is, not unknowingly manipulated by foreign influences), we need to be self-reflexive, vigilant, and careful. I am continually reminded of this when news organizations reach out to members of our team asking about various articles that have included IRA-linked tweets. We need more news organizations like this and like Slate, who continue to be critical of their journalistic routines.